
INNOVATIONS IN ENGINEERING

U.S. Chamber of Commerce Lunar Surface
Systems Workshop

Software Architecture Study

Lauren J. Kessler
C.S. Draper Laboratory

AGENDA
Lunar Surface Systems

3

Overview
Proposal Summary
Study Approach

Results
Requirements
Architecture
Feasibility

Summary

Agenda

OVERVIEW
Lunar Surface Systems

5

Overview
Proposal Summary

Solicitation:
Propose alternative approaches for software
architecture and development to result in

Robust software performance, reliability
Lower development and certification cost
Improved software reuse across lunar systems,
and previous systems

Proposal:
Explore the application of a multi-level autonomous architecture to
the Lunar Surface Systems, using

Vetted autonomous technologies from various domain
applications
Open architecture and software product line approaches

6

Overview
Architectural Vision

Establish a software technology approach that enables:
Effective and malleable distribution of tasks
A range of automation
A reduced barrier to changes and additions of functionality
Development of separable functional components by different
vendors, within a common framework

7

Overview
Study Approach

STUDY RESULTS
Lunar Surface Systems

9

Requirements Development
Philosophy

Concentrated on identifying requirements & constraints
that software directly impacts (and vice versa)…

…based on the premise:

We should be able to advance the capabilities of a
system in an evolutionary way

We shouldn’t need a software revolution each time we
want to increase our system’s capabilities

10

Requirements Development
Approach

Identified Lunar Outpost functional needs / capabilities
Culled information from Lunar Outpost documents, and existing analogous
systems (e.g. ISS, McMurdo)
Separated the functionality into potential phases – Assembly, Operation,
Maintenance

Leveraged previous experience from space and other domains
Identified existing automation technologies

– Space Applications, e.g. International Space Station
– Commercial Applications, e.g. Cable Services provider
– DoD, e.g. Unmanned Undersea Vehicles

Utilized best practices from software engineering
– Software partitioning, open software, software product lines

Focused on cost as a primary constraint
Reshape the cost curve of the software over its lifetime…
…while providing appropriate capability over the lifetime of the Lunar Surface
System

11

Architecture
Vision

Establish a software technology approach that enables:
Effective and malleable distribution of tasks
A range of automation
A reduced barrier to changes and additions of functionality
Development of separable functional components by different
vendors, within a common framework

Key architectural design constructs:
Federated (no central point of knowledge)

Common “kernel” or framework
Fault tolerant (no system crash from a single fault)

Byzantine fault tolerant architecture

12

Architecture
High-Level View - Federated Kernel

Core components that are repeated over and over
There are facilities for communications, application development,
user interface and control

Each software application is built using the core components
Configuration of each component, tailored to the operational
requirements, is built using a combination of kernel services, and
software applications

Kernel
Services Apps Set A

Communications Communications Communications
Kernel
Services Apps Set B Kernel

Services Apps Set C

Kernel
Services Apps Set A

Communications
Kernel
Services Apps Set D

Communications

13

Functional Requirements

Culled information from various sources:
Lunar Surface Systems documents
– Surface Architecture Reference Document
– Trade Set 1 (Surface Buildup Sequence)
– Element documents

Selected a single function as
evaluation strawman

One that crossed as many
surface elements and ops as
possible: Power

Powe
r x x x x x x x x x x x

Analogous systems
– ISS
– McMurdo
– Devon Island

Potential mission phases
– Assembly
– Operations
– Maintenance

14

Software Constraints

To manage cost, the software should:

Appropriately leverage human & computer capabilities
Variable as to distribution of capabilities over application and time

Explicitly support the planned addition of new functionality
Non custom solutions for each functional element

Be an integrated software system
Allows for a high degree of re-use

Be extensible and modular
To provide an avenue for more efficient certification

Open (at least in areas of extensibility)
To allow an avenue for multiple contractor participation

Use standard tools and coding standards, plus tools to enforce coding
standards

Note: these help, but do not guarantee, a simple, elegant solution
Software should be built without assumptions about where it will be applied

(or with those assumptions isolated)

15

Candidate Software Architecture Development
Approach

“Software first” design approach

Performed a functional decomposition, with a deliberate software
orientation
Broke the traditional design methodologies cycle which often
encourage stovepipe software development

Often, system functional decomposition results in a hardware
oriented designing, leading to…
…software that is developed to service a specific piece of
hardware performing a specific function
Software has increasing functional capabilities, that can be
divorced from functional requirements specified by the hardware

16

Candidate Software Architecture Development

Developed notional software architecture(s) that provide
Required LSS functionality
Fault tolerance
Malleable functionality – capability adjustments

Considered software engineering practices
Business considerations (e.g. multiple contractors)

Develop to the level of “node”, with the assumptions:
Minimal hardware inventory and software processing
power to hold a node in our architecture

– Not intended for a micro-controller
Communication ability between nodes

17

Architecture Component Diagram

Device Layer

System Services Layer

Sequencing Layer

Platform Layer

Objects &
 Data

Data and
Object

Handler

Command
and

Control
Handler

Commands

...

Ground
Downlink Databus Command

Uplink
Required Layer Component

Optional Layer Component

Command
and

Control
Handler

Data and
Object

Handler

Percipient Autonomy

Resource Management

Fault Mgmt

Health & Status

Upload/Patch

TLX Engine w/Scripts

MATLAB w/mFiles

Human w/fingers

Navigation Services

18

Resulting Architectural Concept

Federated, Open, Fault-Tolerant, Distributed, Autonomous Network
(FOFTDAN)

Federated: no central point of knowledge (e.g. each entity can be both a
server and a client)
Using common protocols

Layered with common Middleware solution comprising of services that
will handle the functions of the individual component.

Software should be common
across components. We should
build a common software
infrastructure that everyone
developing for LSS uses.
Architecture should be layered, in
order to accommodate this
Note: this does cost more upfront,
but it should payoff long term

19

Definitions

* NASA Procedural Requirements: Human-Rating Requirements for Space Systems, NPR 8705.2B, May 6, 2008

Autonomous Ability of a space system to perform operations independent
from any Earth-based systems. This includes no
communication with, or real-time support from, mission
control or other Earth systems.*

Automated Automatic (as opposed to human) control of a system or
operation.*

20

Levels of Automation and Decision Making

An automated system may be designed for full or partial
replacement of a function previously carried out by an operator.
Automation is not all or none, but a continuum.
Many human-in-the-loop supervisory control systems are
designed for Level 2-4.

Levels of Automation of Decision and Action Selection

1 2 3 4 5 6 7 8 9 10
The computer

offers no
assistance,
human must

make all
decisions and

actions

The computer
offers a

complete set
of decision/

action
alternatives

narrows the
selection

down to a few

suggests one
alternative

executes that
suggestion if
the human
approves

Allows the
human a

restricted time
to veto before

automatic
execution

Executes
automatically,

then
necessarily
informs the

human

Informs the
human only if

asked

Informs the
human only if

it, the
computer,
decides to

Computer
decides

everything, acts
autonomously,

ignoring the
human

Parasuraman, R., T. B. Sheridan and C. D. Wickens (2000). "A Model for Types and Levels of Human Interaction with Automation."
IEEE Transactions on Systems, Man, and Cybernetics 30(3): 286-297.

21

Sequencing Layer
Functional Description

Provides high-level control for a particular component to
Mission control
Lunar outpost control
Automation services

Contents within this layer would be either be modified or actuated
differently from mission to mission, in order to drive component
behavior
Intent is to simplify, isolate, and plan for changes in the mission-
level logic driving components
Sequencing behavior could be accomplished via:

Human interface
Scripting language (e.g. Timeliner, SCL)
3rd party tool (e.g. MATLAB)
Different sequencing layer implementations would
be used, depending on the component application

22

More Definitions

* NASA Procedural Requirements: Human-Rating Requirements for Space Systems, NPR 8705.2B, May 6, 2008

Scripted
autonomy

• Scripted systems architectures include an execution engine, supplied by
just-in-time human developed scripts

• After the initial development of the execution engine are primarily data-
driven, and therefore are lightweight and relatively simple to verify

• Provides the human operator a significant level of control over the behavior
of the system

• However, such systems become increasingly complex to develop to be
robust for highly dynamic environments

Percipient
autonomy

• Provides built-in mechanisms for algorithmic adaptation for highly variable
environments

• When used on the systems for which they are best suited, there is a long
term benefit from the comprehensiveness of such autonomous algorithms,
and will allow the systems to operate in more situations than originally
conceived

23

Sequencing Layer
Implementation: Timeliner

Excellent fit for automating tasks for which there is an established
manual procedure
Scripts can be commanded without rebooting the execution engine

Install/Remove (allows “hot swapping” of new scripts)
Stop/Start
Jump to a key location
Pause and wait for operator confirmation

Scripts are separated from each other, such that a failure of one script
does not stop other scripts from executing
Scripting language is English-like, making it
readable by a broader audience than traditional code
Any tool, including 3rd party tools, can be integrated into
the sequencing layer by implementing interfaces to the
Data Object and C2 handlers
All interaction with the layers below is accomplished
via these handlers

24

Sequencing Layer
Implementation: Human Interface

Would be appropriate for components that are poorly
suited to software-based control, or for which

Indirect human control would certainly always be
available through commands to the scripting language
or 3rd party toolBased on Model/View/Controller design
pattern

Implemented via
Remote or local display
A human input device

– Button/Lever
– GUI

…where direct human control is desired

25

Services Layer

Services layer provides standard software components from
which to build each software application
Some services would be common to all systems, for example

Resource Management – managing of system resources
Fault Management – standard fault approach
Health & Status – standard basic telemetry support
Upload/Patch – standard software maintenance

Other services would only occur on
systems that needed them

Navigation Services (vehicles only)
Percipient Autonomy (components that are good
candidates for percipient control)

26

Device and Platform Layers

Device Layer:
Provides drivers for communication with physical hardware devices

Ground Uplink/Downlink (if available)
Databus (required)
Other physical devices, for example

– Solar panel controller
– ECLSS
– Vehicle controller

Platform Layer:
Provides an interface to the operating
system

Isolates OS specific functions
Provides portability
Standardizes which (and how) OS
components are used

Device Layer

System Services Layer

Sequencing Layer

Platform Layer

...

Percipient Autonomy

Resource Management
Fault Mgmt

Health & Status
Upload/Patch

TLX Engine w/Scripts

MATLAB w/mFiles

Human w/fingers

Navigation Services

Device Layer

System Services Layer

Sequencing Layer

Platform Layer

...

Percipient Autonomy

Resource Management
Fault Mgmt

Health & Status
Upload/Patch

TLX Engine w/Scripts

MATLAB w/mFiles

Human w/fingers

Navigation Services

27

FOFTDAN Summary

What’s different about FOFTDAN?
The sequencing layer provides

– High-level personalization in terms of behavior
– Configurable avenues of control

The services layer provides functional extensibility
The device layers allow you to customize the hardware
A fault tolerance approach, based on either hardware
or software can integrate safety into the architecture

– As a standard feature
– Not depend entirely on design-assurance methods

for safety
Capitalizes on distributed, federated approach to
enhance existing fault tolerant methods

28

Feasibility
Use Cases

We examined the design applicability of FOFTDAN, and
resultant levels of automation against projected LSS elements,
e.g. the Solar Array

Selected the solar array LSS element due to the following
features:

Has associated activities in the assembly, operations and
maintenance phases;
Is an essential element of a cross-cutting function, namely
the production of power;
The required functions of the array has the potential for
varying levels of automation;
Can be easily isolated, for the purpose of this examination,
from other LSS elements.

29

LSS Example

Command Source (component on
crew cabin, mission control, or both)

Positioning Commands (from the moon
crew, from earth, or both)

Status, including energy performance,
deployment state, and location/orientation.

Manual (human) selection of locations.

Software suggestion, human decision.

Autonomous selection of locations.

1. Mission planning to identify placement
for solar arrays.

Remote control from crew cabin or earth.

Waypoint based autonomy, with path
selected outside of the vehicle.

Autonomously, based on a goal location.

2. Commanding solar arrays to a location.

Human provided commanding.

Human issues high level command,
software produces low level commands.
Autonomous adjustment based on
monitoring information.

4. Adjustment of array orientation/
positioning

Human based observations of
performance.
Autonomous monitoring with human
notification of problems.
Autonomous monitoring, with automatic
corrections for problems.

3. Monitoring of array performance

Device Layer

System Services
Layer

Sequencing Layer

Platform Layer

.

.

.Percipient Autonomy

Resource
ManagementFault Mgmt

Health & Status
Upload/Patch

TLX Engine w/
ScriptsMATLAB w/mFiles

Human w/fingers

Navigation Services

Device Layer

System Services
Layer

Sequencing
Layer

Platform Layer

.

.

.
Percipient
Autonomy

Resource
ManagementFault Mgmt

Health & Status
Upload/Patch

TLX Engine w/
ScriptsMATLAB w/
mFilesHuman w/fingers

Navigation
Services

Device Layer

System Services
Layer

Sequencing
Layer

Platform Layer

.

.

.
Percipient
Autonomy

Resource
ManagementFault Mgmt

Health & Status
Upload/Patch

TLX Engine w/
ScriptsMATLAB w/
mFilesHuman w/fingers

Navigation
Services

30

Existing Technologies

Architectures such as FOFTDAN are feasible because they
strategically re-use concepts, techniques, and technologies from
existing architectures, embodying

Open architectures
Software re-use
Distributed computing
Federated and expandable systems

Many of the lower-level technologies have been vetted in the
commercial world, including real-time operating systems, device
drivers, etc.
Automation systems as well are not pie-in-the-sky technologies,
e.g. ISS, cable servicing, etc.

http://images.google.com/imgres?imgurl=http://imagecache2.allposters.com/images/pic/SPA/F2160~NASA-International-Space-Station-Spaceshots-Posters.jpg&imgrefurl=http://www.allposters.com/-sp/NASA-International-Space-Station-Spaceshots-Posters_i390771_.htm&h=313&w=400&sz=40&hl=en&start=2&tbnid=48Hercyn7Rcd3M:&tbnh=97&tbnw=124&prev=/images?q=international+space+station&hl=en&rls=GGLD,GGLD:2007-39,GGLD:en&sa=N

31

Industry Effects

What effect does this have on industry?
A demonstrated feedback mechanism has proven
useful to advances in space and on Earth.

International Space Station

Cable Service Provider

Automation
Technologies

On the ISS, this technology enabled astronauts and ground control to
focus on other, more cognitively intensive tasks
On Earth, this technology streamlined the call-center operations for
diagnosing existing problems, and improved customer satisfaction

SUMMARY
Lunar Surface Systems

33

Summary

Enabling software architectures, embodying the critical
concepts of…

– Extensibility and modularity
– Controllable growth
– Composable certification
– Software product lines (e.g. core assets such as a

kernel)
…will be a fundamental source in accreting functionality for the
LSS over time

Changes the workload of the human
– Machine performs rule-based tasks
– Human performs knowledge-based tasks

Reduces the need for a large Earth-based operations team
…will be a fundamental source of new technologies for Earth
based commercial operations

34

Team

John West (Program Management)
Lauren J. Kessler (PI)
Emily Braunstein
Stephen Duncan
Kevin Duda
Mark Lyon
Michael Ricard

QUESTIONS?
Lunar Surface Systems

ADDITIONAL
MATERIALS

Lunar Surface Systems

37

Multi-Loop Model of Supervisory Control

Sheridan, T. B. (1984). “Supervisory Control of Remote Manipulators, Vehicles and Dynamic Processes.” Advances in Man-
Machine Systems research. W. B. Rouse (Ed.). New York, JAI Press.

Multi-Loop Model of Supervisory Control
1 2 3 4 5

Task is observed directly by
human operator’s own

senses.

Task is observed indirectly
through sensors, computers

and displays.

Limited number tasks are
controlled by the computer’s

automatic mode.

Majority of the tasks are
controlled by the computer’s

automatic mode.

Task is controlled
completely within the

computer’s automatic mode .

Human operator directly
affects task by manipulation.

Human operator indirectly
affects task through controls,

computers, and actuators.

Human operator gets
feedback from the computer.

A majority of tasks can be
affected indirectly.

Human operator gets
feedback from the computer.
A limited set of tasks can be

affected indirectly.

Human operator observes
display. Has no ability to

interact with the task.

38

Software Approaches & Technologies

• Concentrate on the strategic application of established software
development techniques
– Software Partitioning

• Decomposition of the software for each vehicle subsystem into modules in
order to break down the problem in a systematic way

• There are many existing, well established techniques for partitioning that allow
us to address the problem incrementally (development, testing…)

– Open Software
• Originally designed, developed and documented to be usable by contractors

other than the initial implementer to:
– Study, change, and improve the software
– Reuse it in modified or unmodified form to accommodate new system

development
• Open software can be secure software

– Software Product Line
• A set of software-based subsystems that share common features and are

developed in a prescribed way
• Can be used in multiple applications as is, or tailored

39

How these concepts interrelate

Application
Applying the techniques in isolation

Goals can be reached
(adaptable, maintainable, and
cost effective systems)
More rigor and effort is required
than strategic combination

Combining them coherently results in
Development efficiency
Encourages continuing
competition
Focuses on enhancing the
system, rather than replacing it

Open
S/W

Partitioned
S/W

SPL

Sweet
spot

40

Example: International Space Station

International Space Station

Timeliner Executor is on-orbit and operational aboard both the Payload and C&C
MDMs
Timeliner is also being used to automate ISS Core operations

Reconfiguration of C&W event tables upon C&C MDM switch
Upgrade of DCSU power controller firmware
Other procedures are in the “pipeline”

– S-Band operations, TCS reconfiguration, HCOR reset, …
MOD concept for “lights-out” control center operations using Timeliner

Benefits of using Timeliner
Reduction in ground operations workload
Reduction in need for console positions

http://images.google.com/imgres?imgurl=http://imagecache2.allposters.com/images/pic/SPA/F2160~NASA-International-Space-Station-Spaceshots-Posters.jpg&imgrefurl=http://www.allposters.com/-sp/NASA-International-Space-Station-Spaceshots-Posters_i390771_.htm&h=313&w=400&sz=40&hl=en&start=2&tbnid=48Hercyn7Rcd3M:&tbnh=97&tbnw=124&prev=/images?q=international+space+station&hl=en&rls=GGLD,GGLD:2007-39,GGLD:en&sa=N

41

Example: International Space Station

HAL System
Automates payload monitoring and commanding that would
otherwise be conducted by ground personnel

Occurs even when there is no ground communication
“The HAL system was critical in a recent consolidation of
ground controllers; it basically automated a complete ground
position”

Capability was built up through time through increasingly complex
scripting logic
Layered Timeliner Approach

“Master Bundle” provides high-level payload management
Payload specific bundles provide lower level monitoring and
control
HAL Master bundle continuously monitors payload device
power status and automatically executes startup/shutdown
sequences in response to change in status

42

Example: Orbital Express Program

Launch
Opportunities

Operations with
Microsats

• Fully Autonomous Rendezvous and
Prox Ops

• Soft capture and mating
• Fluid and ORU transfers
• Robotic arm demonstrations
• Ground Infrastructure

Demonstration
Enhancements

Auxiliary
Payloads

Program Objectives:
• Design and build the ASTRO (servicing vehicle) and NEXTSat (Next Generation Satellite) vehicles

to successfully demonstrate autonomous servicing
• Continue to refine conceptual operational missions

Atlas V
March07

Demonstrates a cost effective method
using an industry wide standard for

autonomous satellite servicing:
satellite repositioning, rescue, repair,
refueling, upgrade, maintenance and

DoD applications

43

Example: Orbital Express

Several Timeliner features were highly beneficial for Orbital Express
Mission Manager:
Ability to easily upload new scripts, without rebooting

Allowed the mission logic to be modified in a contained manner
Authorization-to-Proceed (ATP) mechanism required human authorization
at key points

System was configurable to adjust the ATP level
Initially the level was set such that a high degree of human
confirmation was needed
Operators modified the level of software autonomy by adjusting the
ATP level

– Early scenarios were run slowly with many ATP points
– Later scenarios were run much more autonomously, as confidence

was gained in the system capabilities
Ground based commanding allowed for slight modifications of script
behavior without uploading new scripts

Ground based pause/jump were useful for small logic changes, as a
workaround to hardware anomalies

44

Example: Cable Modem Management

Cornerstone HDT

Fiber Node Transponder Power Supply Transponder

Tollgrade & Cheetah HEC

Customer
Voice Port

CMTS

Cable Modem

Net ExpertNet Expert SpectrumSpectrum CMExCMEx

Network
Element
Layer

Element
Management
Layer

Network
Management
Layer

Service
Management
Layer

Network ManagementNetwork Management

Trouble TicketingTrouble TicketingCustomer DataCustomer Data
Email Alerts

SQL

APISMTPHTMLXML

SQL TLXSNMPSNMPTL1

45

TLX – Key Architectural Features

Provides built-in support for third party interfaces (via TIS/TIL
architecture)
Provides architecture to chain together multiple TLX engines
that are working on the same problem

Auspice applications of this include
– Multiple TLX engines working on the same task,

coordinated via a SQL database work queue (provides
increased data processing workflow)

– Multiple TLX engines with different functional roles in an
architecture

– Addressing I/O bottlenecks via dedicated engines
– TEAM architecture, which separates event detection,

management, and handling into different TLX engines
– Primary/Backup engines
– Web interface for monitoring engines

The TLX Platform Architecture

	U.S. Chamber of Commerce Lunar Surface Systems Workshop��Software Architecture Study
	AGENDA
	Agenda
	OVERVIEW
	Overview�Proposal Summary
	Overview�Architectural Vision
	Overview�Study Approach
	STUDY RESULTS
	Requirements Development�Philosophy
	Requirements Development�Approach
	Architecture�Vision
	Architecture�High-Level View - Federated Kernel
	Functional Requirements
	Software Constraints
	Candidate Software Architecture Development�Approach
	Candidate Software Architecture Development
	Architecture Component Diagram
	Resulting Architectural Concept
	Definitions
	Levels of Automation and Decision Making
	Sequencing Layer�Functional Description
	More Definitions
	Sequencing Layer�Implementation: Timeliner
	Sequencing Layer�Implementation: Human Interface
	Services Layer
	Device and Platform Layers
	FOFTDAN Summary
	Feasibility�Use Cases
	LSS Example
	Existing Technologies
	Industry Effects
	SUMMARY
	Summary
	Team
	QUESTIONS?
	ADDITIONAL�MATERIALS
	Multi-Loop Model of Supervisory Control
	Software Approaches & Technologies
	How these concepts interrelate
	Example: International Space Station
	Example: International Space Station
	Example: Orbital Express Program
	Example: Orbital Express
	Example: Cable Modem Management
	TLX – Key Architectural Features
	The TLX Platform Architecture

